1. From the textbook: Solve exercises 2.14, 3.3, 3.4, 3.9, 3.10, 3.16, 3.25.

2. a.Suppose that satisfies linearity (i.e., what the book calls additivity). Suppose also that is continuous. Show that is linear (i.e., it also satisfies homogeneity). b. Give an example of a that is additive but not homogeneous.

3. The goal of this exercise is to state and prove the rank-nullity theorem (Theorem 3.4 from the book) without the assumption that is finite dimensional. What we want to show is that if are vector spaces and is linear, then

.

First, we need to make sense of . Recall that if is a set, an equivalence relation on is a relation such that:

for any (reflexivity),

Whenever , then also (symmetry),

If and , then also (transitivity).

Given such an equivalence relation, the equivalence class of an element is the subset consisting of all those such that . The quotient is the collection of all equivalence classes, so if then there is some such that .

The point is that the equivalence classes form a partition of into pairwise disjoint, non-empty sets: Each is nonempty, since Clearly, the union of all the classes is (again, because any is in the class ), and if , then in fact (check this).

Ok. Back to . Define, in , an equivalence relation by: iff (Check that this is an equivalence relation). Then, as a set, we define to be . The reason why the null space is even mentioned here is because of the following (check this): iff .

We want to define addition in and scalar multiplication so that is actually a vector space.

Given and in , set , where if and , then . The problem with this definition is that in general there may be infinitely many such that and infinitely many such that . In order for this definition to make sense, we need to prove that for any such , we . Show this.

Given , and a scalar , define , where if , then . As before, we need to check that this is well-defined, i.e., that if , then also .

Check that is indeed a vector space with the operations we just defined.

Now we want to define a linear transformation from to , and argue that it is an isomorphism. Define by where . Once again, check that this is well-defined. Also, check that this is indeed linear, and a bijection.

Finally, to see that this is the “right” version of Theorem 3.4, we want to verify that if is finite dimensional. Prove this directly (i.e., without using the statement of Theorem 3.4).

This entry was posted on Friday, February 11th, 2011 at 4:13 pm and is filed under 403/503: Linear Algebra II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Georgii: Let me start with some brief remarks. In a series of three papers: a. Wacław Sierpiński, "Contribution à la théorie des séries divergentes", Comp. Rend. Soc. Sci. Varsovie 3 (1910) 89–93 (in Polish). b. Wacław Sierpiński, "Remarque sur la théorème de Riemann relatif aux séries semi-convergentes", Prac. Mat. Fiz. XXI (1910) 17–20 […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

Stefan, "low" cardinalities do not change by passing from $L({\mathbb R})$ to $L({\mathbb R})[{\mathcal U}]$, so the answer to the second question is that the existence of a nonprincipal ultrafilter does not imply the existence of a Vitali set. More precisely: Assume determinacy in $L({\mathbb R})$. Then $2^\omega/E_0$ is a successor cardinal to ${ […]

Marginalia to a theorem of Silver (see also this link) by Keith I. Devlin and R. B. Jensen, 1975. A humble title and yet, undoubtedly, one of the most important papers of all time in set theory.

Given a positive integer $a$, the Ramsey number $R(a)$ is the least $n$ such that whenever the edges of the complete graph $K_n$ are colored using only two colors, we necessarily have a copy of $K_a$ with all its edges of the same color. For example, $R(3)= 6$, which is usually stated by saying that in a party of 6 people, necessarily there are 3 that know e […]

Equality is part of the background (first-order) logic, so it is included, but there is no need to mention it. The situation is the same in many other theories. If you want to work in a language without equality, on the other hand, then this is mentioned explicitly. It is true that from extensionality (and logical axioms), one can prove that two sets are equ […]

$L$ has such a nice canonical structure that one can use it to define a global well-ordering. That is, there is a formula $\phi(u,v)$ that (provably in $\mathsf{ZF}$) well-orders all of $L$, so that its restriction to any specific set $A$ in $L$ is a set well-ordering of $A$. The well-ordering $\varphi$ you are asking about can be obtained as the restriction […]

Gödel sentences are by construction $\Pi^0_1$ statements, that is, they have the form "for all $n$ ...", where ... is a recursive statement (think "a statement that a computer can decide"). For instance, the typical Gödel sentence for a system $T$ coming from the second incompleteness theorem says that "for all $n$ that code a proof […]

When I first saw the question, I remembered there was a proof on MO using Ramsey theory, but couldn't remember how the argument went, so I came up with the following, that I first posted as a comment: A cute proof using Schur's theorem: Fix $a$ in your semigroup $S$, and color $n$ and $m$ with the same color whenever $a^n=a^m$. By Schur's theo […]

It depends on what you are doing. I assume by lower level you really mean high level, or general, or 2-digit class. In that case, 54 is general topology, 26 is real functions, 03 is mathematical logic and foundations. "Point-set topology" most likely refers to the stuff in 54, or to the theory of Baire functions, as in 26A21, or to descriptive set […]

Thanks, Tommy. I think it is fixed now.

Hi Dr. Caicedo,

I just want to point out a possible typo. I believe is supposed to be

May the Math Be With You!

Tommy